Формули на Виет 8 клас
Теорема 1: Ако $x_1$ и $x_2$ са корени на квадратното уравнение $ax^2+bx+c=0$ ($a\neq 0$) , то са изпълнени следните равенства: $x_1+x_2=-\frac{b}{a}$ и $x_1.x_2=\frac{c}{a}$. Зависимостите между корените $x_1$ и $x_2$ на квадратното уравнение от Теорема 1 и неговите коефициенти се наричат формули на Виет (последните две равенства от Теорема 1 ). Важно е да споменем, че формулите на Виет не ни гарантират наличието на реални решения на квадратното уравнение $ax^2+bx+c=0$. Със следващата теорема, която се нарича обратна теорема на Виет можем да възстановим едно квадратно уравнение, ако знаем неговите корени. Теорема 2 (обратна теорема на Виет): Ако за числата $x_1$ и $x_2$ са в сила равенствата $x_1+x_2=-p$ и $x_1.x_2=q$, то $x_1$ и $x_2$ са корени на уравнението $x^2+px+q=0$. Преди да преминем към разглеждането на задачите, нека кажем и някои важни следствия от формулите за съкратено умножение, които съществено ще използваме в някои от примерите. Сборът $x_1^2+x_2^2$ можем да пр...